Applications for this PhD have now closed.
Location Western Sydney University, School of Medicine
App. deadline 05/10/2018
  • Scholarship available
Eligibility Open to international applicants

Influence of melanopsin-containing ganglion cell photoreceptors on the physiology of the mammalian retina

The neural network of the mammalian retina is one of the most studied within the central nervous system. However, surprises are still common, with a third type of photoreceptor discovered in recent years. Melanopsin containing ganglion cells (mRGCs) are located on the opposite side of the retina from the classical rod and cone photoreceptors, and play a role in a number of sub-conscious functions like pupil light contraction, entrainment of biological clocks to the light-dark cycle and as well as contributing to aspects of conscious visual perception. Additionally, mRGCs are thought to be involved with many aspects of local retinal physiology, but this research area is in its infancy. This project will use cutting-edge chemogenetic tools to assess the impact of mRGC activation on retinal function. This will be assessed using a variety of methods in transgenic mice, ranging from in vivo electroretinographic recordings, to light-induced dopamine release. Techniques involved will be in vitro electrophysiology, in vivo electroretinogram, immunohistochemistry and UHPLC-MS/MS quantification of dopamine. No technical experience is necessary as full training will be given, however candidates must have an interest in neuroscience/retinal biology and a life sciences/medical background.

Please Note: Should this listing mention details of an available scholarship, it is your responsibility to confirm the specifics with the university / institute prior to applyiing. Terms and conditions are in some cases subject to change and are not always reflected immediately within listings.

See our full disclaimer

Further Information / Application Enquiries

Dr Morven Cameron